39 research outputs found

    Variational and Time-Distributed Methods for Real-time Model Predictive Control

    Full text link
    This dissertation concerns the theoretical, algorithmic, and practical aspects of solving optimal control problems (OCPs) in real-time. The topic is motivated by Model Predictive Control (MPC), a powerful control technique for constrained, nonlinear systems that computes control actions by solving a parameterized OCP at each sampling instant. To successfully implement MPC, these parameterized OCPs need to be solved in real-time. This is a significant challenge for systems with fast dynamics and/or limited onboard computing power and is often the largest barrier to the deployment of MPC controllers. The contributions of this dissertation are as follows. First, I present a system theoretic analysis of Time-distributed Optimization (TDO) in Model Predictive Control. When implemented using TDO, an MPC controller distributed optimization iterates over time by maintaining a running solution estimate for the optimal control problem and updating it at each sampling instant. The resulting controller can be viewed as a dynamic compensator which is placed in closed-loop with the plant. The resulting coupled plant-optimizer system is analyzed using input-to-state stability concepts and sufficient conditions for stability and constraint satisfaction are derived. When applied to time distributed sequential quadratic programming, the framework significantly extends the existing theoretical analysis for the real-time iteration scheme. Numerical simulations are presented that demonstrate the effectiveness of the scheme. Second, I present the Proximally Stabilized Fischer-Burmeister (FBstab) algorithm for convex quadratic programming. FBstab is a novel algorithm that synergistically combines the proximal point algorithm with a primal-dual semismooth Newton-type method. FBstab is numerically robust, easy to warmstart, handles degenerate primal-dual solutions, detects infeasibility/unboundedness and requires only that the Hessian matrix be positive semidefinite. The chapter outlines the algorithm, provides convergence and convergence rate proofs, and reports some numerical results from model predictive control benchmarks and from the Maros-Meszaros test set. Overall, FBstab shown to be is competitive with state of the art methods and to be especially promising for model predictive control and other parameterized problems. Finally, I present an experimental application of some of the approaches from the first two chapters: Emissions oriented supervisory model predictive control (SMPC) of a diesel engine. The control objective is to reduce engine-out cumulative NOx and total hydrocarbon (THC) emissions. This is accomplished using an MPC controller which minimizes deviation from optimal setpoints, subject to combustion quality constraints, by coordinating the fuel input and the EGR rate target provided to an inner-loop airpath controller. The SMPC controller is implemented using TDO and a variant of FBstab which allows us to achieve sub-millisecond controller execution times. We experimentally demonstrate 10-15% cumulative emissions reductions over the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) drivecycle.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155167/1/dliaomcp_1.pd

    A Semismooth Predictor Corrector Method for Real-Time Constrained Parametric Optimization with Applications in Model Predictive Control

    Full text link
    Real-time optimization problems are ubiquitous in control and estimation, and are typically parameterized by incoming measurement data and/or operator commands. This paper proposes solving parameterized constrained nonlinear programs using a semismooth predictor-corrector (SSPC) method. Nonlinear complementarity functions are used to reformulate the first order necessary conditions of the optimization problem into a parameterized non-smooth root-finding problem. Starting from an approximate solution, a semismooth Euler-Newton algorithm is proposed for tracking the trajectory of the primal-dual solution as the parameter varies over time. Active set changes are naturally handled by the SSPC method, which only requires the solution of linear systems of equations. The paper establishes conditions under which the solution trajectories of the root-finding problem are well behaved and provides sufficient conditions for ensuring boundedness of the tracking error. Numerical case studies featuring the application of the SSPC method to nonlinear model predictive control are reported and demonstrate the advantages of the proposed method

    Inexact GMRES Policy Iteration for Large-Scale Markov Decision Processes

    Full text link
    Policy iteration enjoys a local quadratic rate of contraction, but its iterations are computationally expensive for Markov decision processes (MDPs) with a large number of states. In light of the connection between policy iteration and the semismooth Newton method and taking inspiration from the inexact variants of the latter, we propose \textit{inexact policy iteration}, a new class of methods for large-scale finite MDPs with local contraction guarantees. We then design an instance based on the deployment of GMRES for the approximate policy evaluation step, which we call inexact GMRES policy iteration. Finally, we demonstrate the superior practical performance of inexact GMRES policy iteration on an MDP with 10000 states, where it achieves a Ă—5.8\times 5.8 and Ă—2.2\times 2.2 speedup with respect to policy iteration and optimistic policy iteration, respectively

    Stochastic Wasserstein Gradient Flows using Streaming Data with an Application in Predictive Maintenance

    Full text link
    We study estimation problems in safety-critical applications with streaming data. Since estimation problems can be posed as optimization problems in the probability space, we devise a stochastic projected Wasserstein gradient flow that keeps track of the belief of the estimated quantity and can consume samples from online data. We show the convergence properties of our algorithm. Our analysis combines recent advances in the Wasserstein space and its differential structure with more classical stochastic gradient descent. We apply our methodology for predictive maintenance of safety-critical processes: Our approach is shown to lead to superior performance when compared to classical least squares, enabling, among others, improved robustness for decision-making.Comment: Accepted for presentation at, and publication in the proceedings of, the 2023 IFAC World Congres
    corecore